Skip to content

Transcranial ultrasound stimulation selectively affects cortical neurovascular coupling across neuronal types and LFP frequency bands

DOI

Previous studies have affirmed that transcranial ultrasound stimulation (TUS) can influence cortical neurovascular coupling across low-frequency (0-2 Hz)/high-frequency (160-200 Hz) neural oscillations and hemodynamics. Nevertheless, the selectivity of this coupling triggered by transcranial ultrasound stimulation for spike activity (> 300 Hz) and additional frequency bands (4-150 Hz) remains elusive. We applied transcranial ultrasound stimulation to mice visual cortex while simultaneously recording total hemoglobin concentration, spike activity, and local field potentials. Our findings include (1) a significant increase in coupling strength between spike firing rates of putative inhibitory neurons/putative excitatory neurons and total hemoglobin concentration post-transcranial ultrasound stimulation; (2) an ~ 2.1-fold higher Pearson correlation coefficient between putative inhibitory neurons and total hemoglobin concentration compared with putative excitatory neurons and total hemoglobin concentration (*P < 0.05); (3) a notably greater cross-correlation between putative inhibitory neurons and total hemoglobin concentration than that between putative excitatory neurons and total hemoglobin concentration (*P < 0.05); (4) an enhancement of Pearson correlation coefficient between the relative power of γ frequency band (30-80 Hz), hγ frequency band (80-150 Hz) and total hemoglobin concentration following transcranial ultrasound stimulation (*P < 0.05); and (5) strongest cross-correlation observed at negative delay for θ frequency band, and positive delay for α, β, γ, hγ frequency bands. Collectively, these results demonstrate that cortical neurovascular coupling evoked by transcranial ultrasound stimulation exhibits selectivity concerning neuronal types and local field potential frequency bands.

Authors:

Zhaocheng Su, Mengyang Liu, Yi Yuan, Honglei Jiao

Published: 2023

PMID: 38044470


Products:

Custom Silicon

Research Area:

Systems Neuroscience, Computational Neuroscience, Methodological Studies

Species/Model:

Mouse